Модуль упругости дерева сосна
Модуль упругости древесины
Упругость древесины – способность к восстановлению исходной формы после прекращения действия нагрузки. Это механическая характеристика, присущая строительным материалам, в том числе, дереву. Характеристика математически выражается модулем упругости – соотношением между нормальными напряжениями и относительными деформациями.
Несмотря на развитие технологий, появления большого разнообразия строительных материалов, дерево было и остается тем материалом, которому отдают предпочтение многие профессиональные строители и заказчики. Дерево как строительный материал используется с незапамятных времен. Сейчас внешний вид, конструкция построек из него значительно изменились. Пролеты деревянных построек могут достигать 120 м! Проектируя подобные строения, обязательно определяют внутренние усилия от действия внешних сил, в том числе с учетом деформированного состояния. В программах для подобных расчетов одной из исходных характеристик является модуль упругости. Рассчитывая этот показатель, определяют, какую нагрузку будет испытывать доска или брус без необратимой деформации, то есть не ломаясь. Чем больше значение характеристики, тем жестче материал.
Параметры, от которых зависит упругость древесины
Модуль упругости древесины — параметр изменяющийся, на его значение влияют:
- Влажность. Упругость древесины находится в обратной зависимости от влажности. То есть при высокой влажности дерева, его способность возвращаться к исходной форме будет минимальной.
- Прямослойность. Если волокна расположены извилисто, беспорядочно, то способность восстанавливать форму у неё будет заметно ниже, чем у прямослойной.
- Плотность. Дерево с низкой плотностью не так упруго, как более плотное.
- Возраст дерева. Древесина старого дерева более упруга, чем молодого.
- Природные особенности дерева. Хвойные деревья имеют однорядные мелкие сердцевинные лучи, поэтому их древесина более упругая, хотя удельный вес у таких пород не велик.
- Возраст самой древесины. Более молодые слои ствола дерева называют заболонью, те, что располагаются ближе к центру, и, соответственно, старее – ядром. Заболонь более упругая, чем ядро.
Нормативная документация
Упругость строительных материалов, древесины в частности, в значительной мере влияет на уровень безопасности для людей зданий и сооружений, а так же сохранности материальных ценностей в них находящихся. Поэтому разрабатываются и утверждаются нормативные документы, определяющие методологию определения параметра упругости а так же расчетов и проектирования конструкций из клееной и цельной древесины.
СНиП II-25-80. Деревянные конструкции. Строительные нормы и правила
СНиП II-25-80. Свод правил. Деревянные конструкции. Этот документ определяет методологию расчета и проектирования зданий, сооружений и конструкций из древесины (цельной и клееной). В том числе в СНиП определенно что конструкции из древесины должны:
- соответствовать требованиям расчетов по деформациям и по несущей способности;
- проектироваться с учетом условий эксплуатации, монтажа, перевозки;
- быть долговечными, что обеспечивается конструктивными решениями, защитной обработкой.
ГОСТ 16483.9-73 Древесина. Методы определения модуля упругости при статическом изгибе
ГОСТ 16483.9-73. Межгосударственный стандарт. Древесина. Методы определения модуля упругости при статическом изгибе. В данном ГОСТе:
- установлены методы определения модуля упругости при статическом изгибе;
- описан процесс определения данного показателя при статическом изгибе кондиционированных и не кондиционированных образцов;
- даны образцы протоколов определения модулей упругости.
Модуль упругости дерева
Древесина считается упругой, если она после устранения действия силы изгибающей её, принимает исходную форму. У упругости есть предел. Он достигается, когда при изгибе деревянная детальили изделие сохранит конечную форму.Попросту говоря, предел упругости доски достигается в тот момент, когда она ломается. Свойства упругости и гибкости не идентичны. Гибкость – способность менять форму под действием внешних воздействий. Упругость – возможность возвращать утраченную форму. Дерево с высоким модулем необходимо для того, чтобы делать спортивные снаряды, мебель. Наиболее упруга древесина таких пород как ясень, бук, кария, лиственница.
Вместо термина упругость часто употребляют понятия жесткость или деформативность.
Чтобы описать способность к возвращению исходной формы, используют следующие физические величины:
- модуль упругости Е;
- коэффициент деформации µ;
- модуль сдвига G.
В общем, можно говорить о том, что при приложении силы вдоль древесных волокон, модуль упругости в 20-25 раз выше, чем если та же сила действует поперек волокон. Если сила действует перпендикулярно направлению волокон и направлена радиально, то этот показатель на 20-50 % больше, чем при действии той же силы в тангенциальном направлении.
Ниже рассмотрим более подробно эти физические величины, определяющие способность дерева возвращать исходную форму при снятии деформирующего усилия.
Модуль упругости древесины основных пород
Модуль упругости в физике рассматривается как единое наименование комплекса физических величин, характеризующих способность твердого тела (в нашем случае – дерева) упруго деформироваться, если к нему будет приложена какая-то сила.
Модуль упругости древесины (Е) – соотношение между нормальными напряжениями и относительными деформациями. Он измеряется в Мпа либо в кГс/см 2 (1Мпа=10.197 кГс/см 2 ) Выделяют несколько видов:
- вдоль волокон Еа.
- поперек волокон (тангенциальный) Еt.
- поперек волокон (радиальный) Еr.
- модуль упругости при изгибе Еизг.
Таблица. Сведения по наиболее часто используемым породам.*
Коэффициенты поперечной деформации основных пород дерева
Во время приложения нагрузки, кроме продольной деформации вдоль волокон так же появляется поперечная при изгибе.
Коэффициенты этого типа деформации приведены в таблице:
Модуль сдвига основных пород древесины
Модуль сдвига – коэффициент пропорциональности между касательными напряжениями и угловыми деформациями древесины.
Данные по модулю сдвига для основных пород приведены ниже:
Пластичность древесины
Дерево способно под давлением менять без разрушения свою форму, сохранять её после того, как давление будет снято. Такое свойство называется пластичностью. Пластичность зависит от тех же критериев, что упругость, только в обратном направлении. Например, чем выше влажность древесины, тем она более пластична, при этом менее упруга.
Пластичность дерева повышают с помощью специальной обработки. Пропаривая или проваривая его в воде, получаем более пластичный материал, которую затем используют для изготовления мебели, полозьев саней. Наивысшая пластичность у бука, вяза, ясеня, дуба. Это свойство обусловлено строением проводящей системы данных пород. У бука, например, много крупных сердцевинных лучей, изгибающих волокна древесины. Сосуды, расположенные группами в годовых слоях вяза, дуба, ясеня, сильно сдавлены более плотной поздней древесиной, поэтому пластичность этих пород высока.
Коэффициент Пуассона
При приложении нагрузки к стержню, кроме продольной деформации ε, появляется поперечная деформация ε1. Коэффициентом поперечной деформации, или коэффициентом Пуассона μ, называется отношение ε1 к ε.
Коэффициент Пуассона древесины определяют путем сжатия прямоугольных призматических образцов сечением 40х40 мм, высотой 150 мм. Чтобы измерить деформацию на образце устанавливается шесть тензометров с базой 20 мм, передаточным числом около 1000. Из этих тензометров два регистрируют продольную деформацию (деформация в направлении действия силы сжатия), остальные четыре измеряют поперечные деформации в двух взаимно перпендикулярных направлениях. Каждый из образцов шестикратно нагружают до 400 и 1600 кг при сжатии вдоль волокон, до 40 и 160 кг при сжатии поперек волокон.
Для древесины сосны, ели коэффициент Пуассона при усилии, направленном вдоль волокон v=0,5.
Модуль упругости фанеры
Фанера – строительный материал, производимый путем склеивания нескольких слоев деревянного шпона. Она очень популяренна, и неспроста. Кроме эстетической ценности, фанера обладает рядом значений параметров, выделяющих её в ряду материалов для строительства. Проходя обработку, фанера приобретает прочность, упругость, влагостойкость.
На характеристики фанеры влияют многие факторы:
- порода дерева, используемого для шпона;
- исходное состояние сырья;
- влажность самой фанеры;
- тип и состав клея, которым соединяются слои шпона;
- технология предварительной обработки.
Для фанеры так же рассчитывается модуль упругости и все соответствующие коэффициенты.
Важно то, что модуль упругости фанеры и другие показатели выше, чем у древесины, из которой она была изготовлена.
Модуль упругости древесины рассчитывают обязательно перед постройкой кровельных, стропильных систем. Знание внутренних усилий, появляющихся в строительных материалах, важно для безопасности, долговечности постройки. Способность возвращать утраченную форму значимо при выборе материала рукояток ударных инструментов, оружейных лож.
Упругость и пластичность древесины. Модуль упругости древесины
Автор: Ирина Железняк | Опубликовано: Ноябрь 16, 2016 в 21:15
Упругость древесины является одной из главных характеристик механических свойств дерева. Упругостью называют способность материала, в данном случае – дерева, сопротивляться деформации под действием механического напряжения.
Упругость древесины зависит от нескольких параметров древесины:
– влажности . Чем выше влажность – тем ниже упругость
– прямослойности . Свилеватая древесина менее упруга, чем прямослойная
– объемного веса. Легкая древесина не так упруга, как тяжелая и плотная
– возраст . Молодая древесина менее упруга, чем зрелая
– размеры сердцевинных лучей. Например, у хвойных пород древесины сердцевинные лучи однорядные и очень мелкие, поэтому такая древесина отличается большой упругостью, невзирая на относительно небольшой удельный вес.
– заболонная древесина менее упруга, чем ядровая.
Модуль упругости дерева
При недлительных нагрузках до напряжений, которые соответствуют пределу пропорциональности (иными словами – до момента, когда процесс деформации окажется необратимым), деформация материала пропорциональна его напряжению, и после снятия нагрузки исчезает. Упругость древесины также именуют жесткостью древесины или деформативностью древесины.
Для определения упругости древесины используют понятия модуля упругости древесины, коэффициента деформации и модуля сдвига . При этом все показатели будут существенно отличаться в зависимости от того, в каком направлении приложена нагрузка – вдоль древесных волокон, тангенциально поперек древесных волокон, радиально поперек древесных волокон.
– Модуль упругости древесины Е – это соотношение между нормальными напряжениями и относительными деформациями. Различают следующие модули упругости: вдоль волокон Еа, поперек волокон тангенциальный Еt, поперек волокон радиальный Еr, модуль упругости при изгибе Еизг;
– Модуль сдвига древесины G – это соотношение между касательными напряжениями и относительным сдвигом
– Коэффициент поперечной деформации дерева µ – это соотношение поперечной деформации к продольной, которые возникают при нагрузке стержня.
Модуль упругости древесины основных пород
Порода древесины | Модуль упругости древесины на растяжение , МПа | Модуль упругости древесины на сжатие , МПа | Модуль упругости древесины на изгиб (статический), МПа | ||||
Еа | Еt | Еr | Еа | Еt | Еr | ||
Береза | 18 300 | 490 | 670 | 16 100 | 520 | 670 | 15 400 |
Ель | 14 600 | 490 | 690 | 14 500 | 430 | 660 | 11 000 |
Сосна | 12 100 | 500 | 580 | 12 100 | 570 | 690 | 12 600 |
Дуб | 14 300 | 890 | 1 160 | 14 300 | 970 | 1 340 | 15 400 |
Модуль упругости дерева исчисляется в МПа, или в кГс/см 2 (1 МПа = 10,19716213 кГс/см 2 ))
Коэффициенты поперечной деформации основных пород дерева
Порода древесины | µra | µta | µar | µtr | µat | µrt |
Береза | 0,58 | 0,45 | 0,043 | 0,81 | 0,04 | 0,49 |
Ель | 0,44 | 0,411 | 0,017 | 0,48 | 0,031 | 0,025 |
Сосна | 0,49 | 0,41 | 0,03 | 0,79 | 0,037 | 0,038 |
Дуб | 0,43 | 0,41 | 0,07 | 0,83 | 0,09 | 0,34 |
Модуль сдвига основных пород древесины
Порода | Gra (МПа) | Gta (МПа) | Grt (Мпа) |
Береза | 1 510 | 870 | 230 |
Ель | – | – | 50 |
Сосна | 1 210 | 780 | – |
Дуб | 1 380 | 980 | 460 |
Модуль упругости древесины обязательно учитывается при сооружении кровельных и стропильных систем, поскольку определение внутренних усилий древесины от воздействия нагрузок играет здесь очень важную роль. К тому же, упругость древесины имеет значение при изготовлении ружейных лож, ручек к ударным инструментам, молотам и прочим случаям, где необходимо смягчить толчки.
Пластичность древесины
Говоря об упругости древесины, невозможно не упомянуть о ее антиподе – пластичности. Пластичность древесины – это ее способность изменять форму при воздействии нагрузки и сохранять ее и после воздействия нагрузки. Данный показатель зависит от тех же факторов, что и упругость, однако их действие будет обратным (чем влажнее древесина – тем она пластичней, чем старше – тем менее пластична и т.д.).
Пластичность древесины можно повысить путем пропарки или проварки горячей водой. Такие методы используют при производстве гнутой мебели, полозьев для саней и прочих мест, где пластичность дерева играет ключевую роль. Среди популярных пород древесины наибольшей пластичностью обладают бук, вяз, ясень и дуб. В частности, у бука хорошая пластичность обусловлена множеством крупных сердцевинных лучей, которые изгибают древесные волокна. У вяза, ясеня и дуба при изгибании крупные сосуды, расположенные кольцевыми рядами в годовых слоях, значительно сдавливаются поздней, более плотной, древесиной, чем и объясняется их высокая пластичность.
Татьяна Кузьменко, член редколлегии Собкор интернет-издания “AtmWood. Дерево-промышленный вестник”
Насколько информация оказалась для Вас полезной?
СНиП II-25-80 от 01.01.1982. Деревянные конструкции. Часть 2
для всех видов сопротивлений, кроме смятия поперек волокон
для смятия поперек волокон
1. Ветровая, монтажная, кроме указанной в п.3
Для опор воздушных линий электропередачи
3. Гололедная, монтажная, ветровая при гололеде, от тяжения проводов при температуре ниже среднегодовой
4. При обрыве проводов и тросов
Обозначение расчетных сопротивлений
Примечание. – радиус кривизны гнутой доски или бруска; а – толщина гнутой доски или бруска в радиальном направлении.
3.3. Расчетные сопротивления строительной фанеры приведены в табл.10.
В необходимых случаях значения расчетных сопротивлений строительной фанеры следует умножать на коэффициенты и приведенные в пп.3.2,а; 3.2,б; 3.2,в; 3.2,г; 3.2,к настоящих норм.
3.4. Упругие характеристики и расчетные сопротивления стали и соединений стальных элементов деревянных конструкций следует принимать по главе СНиП по проектированию стальных конструкций, а арматурных сталей – по главе СНиП по проектированию бетонных и железобетонных конструкций.
Расчетные сопротивления ослабленных нарезкой тяжей из арматурных сталей следует умножать на коэффициент 0,8, а из других сталей – принимать по главе СНиП по проектированию стальных конструкций как для болтов нормальной точности. Расчетные сопротивления двойных тяжей следует снижать умножением на коэффициент 0,85.
растяжению в плоскости листа
сжатию в плоскости листа
изгибу из плоскости листа
1. Фанера клееная березовая марки ФСФ сортов В/BB, B/C, BB/C:
а) семислойная толщиной 8 мм и более:
вдоль волокон наружных слоев
поперек волокон наружных слоев
под углом 45° к волокнам
б) пятислойная толщиной 5-7 мм:
вдоль волокон наружных слоев
поперек волокон наружных слоев
под углом 45° к волокнам
2. Фанера клееная из древесины лиственницы марки ФСФ сортов B/BB и ВВ/C семислойная толщиной 8 мм и более:
вдоль волокон наружных слоев
поперек волокон наружных слоев
под углом 45° к волокнам
3. Фанера бакелизированная марки ФБС толщиной 7 мм и более:
вдоль волокон наружных слоев
поперек волокон наружных слоев
под углом 45° к волокнам
Примечание. Расчетные сопротивления смятию и сжатию перпендикулярно плоскости листа для березовой фанеры марки ФСФ 4 МПа (40 кгс/кв.см) и марки ФБС 8 МПа (80 кгс/кв.см).
1. Фанера клееная березовая марки ФСФ сортов B/BB, B/C, BB/C семислойная и пятислойная:
вдоль волокон наружных слоев
поперек волокон наружных слоев
под углом 45° к волокнам
2. Фанера клееная из древесины лиственницы марки ФСФ сортов В/BB и ВВ/C семислойная:
вдоль волокон наружных слоев
поперек волокон наружных слоев
под углом 45° к волокнам
3. Фанера бакелизированная марки ФБС:
вдоль волокон наружных слоев
поперек волокон наружных слоев
под углом 45° к волокнам
Примечание. Коэффициент Пуассона указан для направления, перпендикулярного оси, вдоль которой определен модуль упругости
3.5. Модуль упругости древесины при расчете по предельным состояниям второй группы следует принимать равным: вдоль волокон =10 000 МПа (100 000 кгс/кв.см); поперек волокон 400 МПа (4 000 кгс/кв.см). Модуль сдвига древесины относительно осей, направленных вдоль и поперек волокон, следует принимать равным 500 МПа (5 000 кгс/кв.см). Коэффициент Пуассона древесины поперек волокон при напряжениях, направленных вдоль волокон, следует принимать равным = 0,5, а вдоль волокон при напряжениях, направленных поперек волокон, 0,02.
Величины модулей упругости и сдвига строительной фанеры в плоскости листа и и коэффициент Пуассона при расчете по второй группе предельных состояний следует принимать по табл.11.
Модуль упругости древесины и фанеры для конструкций, находящихся в различных условиях эксплуатации, подвергающихся воздействию повышенной температуры, совместному воздействию постоянной и временной длительной нагрузок, следует определять умножением указанных выше величин и на коэффициент в табл.5 и коэффициенты и , приведенные в пп.3.2, б и 3.2, в настоящих норм.
Модуль упругости древесины и фанеры в расчетах конструкций (кроме опор ЛЭП) на устойчивость и по деформированной схеме следует принимать равным для древесины ( расчетное сопротивление сжатию вдоль волокон, принимаемое по табл.3), а модуль сдвига относительно осей, направленных вдоль и поперек волокон, для фанеры – принимаются по табл.10, 11).
4. Расчет элементов деревянных конструкций
А. Расчет элементов деревянных конструкций
по предельным состояниям первой группы
Центрально-растянутые и центрально-сжатые элементы
4.1. Расчет центрально-растянутых элементов следует производить по формуле
К вопросу нормирования модуля упругости древесины сосны
В последние десятилетия как в нашей стране, так и за рубежом с применением деревянных клееных конструкций возводятся здания и сооружения, имеющие пролеты от 20 до 120 м.
При расчете таких конструкций (определении внутренних усилий от действия внешних нагрузок и воздействий) в обязательном порядке учитывается их деформированное состояние. Как правило, расчеты выполняются с использованием программных комплексов, где одной из многих исходных данных является величина модуля упругости древесины. В зависимости от величины модуля упругости можно получать различные значения внутренних усилий в сжатых и сжато-изгибаемых элементах деревянных конструкций и, как следствие, размеры поперечных сечений. Обоснованный выбор величины модуля упругости древесины является одной из важных задач при проектировании деревянных конструкций, который усугубляется еще и такими ее свойствами, как анизотропия и ползучесть.
В нормах [1] величина модуля упругости древесины вдоль волокон для конструкций, защищенных от нагрева при относительной влажности окружающего воздуха W ≤75% и находящихся под действием постоянной и временной нагрузок, принималась равной Е k,0 = 10 000 МПа. Такое ее значение применялось в расчетах деревянных конструкций по предельным состояниям второй группы. Что же касалось расчета на устойчивость, то здесь использовался безразмерный параметр в виде отношения кратковременного модуля упругости к временному сопротивлению сжатию.
В нормах [2] при расчете деревянных конструкций по предельным состояниям второй группы, как и в предыдущих нормах [1], было принято Е k,0 = 10 000 МПа. В расчетах элементов на прочность по деформированной схеме и на устойчивость было сделано допущение, что отношение Е/f c,0 = 300 и не зависит от породы древесины, сорта и влажности материала, длительности действия нагрузки, температуры, размеров сечения элементов [3]. То есть в расчетах по деформированной схеме модуль упругости определяется из выражения
Е 1 = 300 f c,0, d , (1)
где f c,0, d – расчетное сопротивление сжатию древесины вдоль волокон.
В этом случае при значениях расчетного сопротивления древесины сосны и ели первого сорта f c,0, d = 14–16 МПа модуль упругости Е 1 = 4200–4800 МПа.
Практика эксплуатации деревянных конструкций показывает, что использование кратковременного модуля упругости древесины, равного Е к,0 = 10 000 МПа, в условиях длительной эксплуатации приводит к занижению расчетных прогибов конструкций. И наоборот, заниженное значение модуля упругости, определяемое по (1), в расчетах по деформированной схеме приводит к неоправданно завышенным сечениям деревянных элементов. В работе [4] установлено, что при определении прогибов деревянных конструкций необходимо учитывать длительный модуль упругости.
В результате теоретических исследований установлено, что при действии постоянной нагрузки в течение срока службы 50 лет и влажности древесины 12% Е con /Е k,0 = 0,76. Экспериментальные исследования деревянных образцов на действие постоянной нагрузки вдоль волокон продолжительностью до 940 дней позволили получить следующие значения коэффициентов длительности: при растяжении Е con /Е k,0 = 0,77; при сжатии Е con /Е k,0 = 0,76 [5]. Следовательно, данные работы [3] подтвердили достоверность выводов работы [4], касающихся величины соотношения длительного модуля упругости к кратковременному. С учетом совместного действия постоянной и снеговой нагрузок в работе [4] прогибы деревянных конструкций предлагается определять по формуле
U con = k (1,32 ρ 0 +1,15S 0 )/E k , (2)
где ρ 0 – величина постоянной нагрузки;
S 0 – величина снеговой нагрузки.
Из выражения (2) можно получить:
– для постоянной нагрузки Е con = 0,76 E k,0 ;
– для снеговой нагрузки Е con = 0,909 E k,0 .
Усредняя значения коэффициента длительности для модуля упругости при совместном действии на конструкцию постоянной и снеговой нагрузок, γ con = (0,76+0,909)/2 = 0,83.
Следует отметить, что в нормах [1] величина кратковременного модуля упругости Е k,0 = 10 000 МПа соответствовала влажности древесины W = 15%. В нормах [2] нормативная влажность древесины была принята W = 12%, но значение модуля упругости осталось прежним, что некорректно. В соответствии с ГОСТ 16483.9-73* при влажности W = 12% модуль упругости будет равен Е k,0 = 10 309 МПа. Тогда нормативное значение длительного модуля упругости будет равно
Е k, con = Е k,0 γ con = 10 309 × 0,83 = 8556 МПа.
Что же касается выражения (1) по определению модуля упругости древесины для расчетов элементов на прочность по деформированной схеме, то допущение, что отношение модуля упругости древесины при сжатии вдоль волокон к сопротивлению древесины на прочность является постоянной величиной, равной 300, не зависит от вышеуказанных факторов и необоснованно по следующим причинам. При назначении расчетного сопротивления древесины на сжатие в зависимости от временного сопротивления учитывается коэффициент вариации υ = 0,15 и коэффициент длительного сопротивления γ con = 0,67, для модуля упругости коэффициент вариации υ = 0,20, а коэффициент длительности (как приведено выше) γ con = 0,83. В связи с этим предлагается определять расчетное значение длительного модуля упругости в зависимости от его нормативного значения по аналогии с определением расчетного сопротивления древесины. Установлено [6], что кратковременное значение модуля упругости Е k,0 = 10 000 МПа, приведенное в [2], является минимальным вероятным значением с обеспеченностью 0,95, т.е. нормативным значением. Тогда в соответствии с [3] расчетное значение будет равно E d, con = E k, con /
γ m = 6800 МПа, где γ m – коэффициент надежности по материалу, равный 1,25.
С некоторым округлением полученных результатов можно принять: для расчета деревянных конструкций по второй группе предельных состояний длительное нормативное значение модуля упругости древесины вдоль волокон E k, con = 8500 МПа; для расчета деревянных конструкций по деформированной схеме длительное расчетное значение модуля упругости древесины вдоль волокон E d, con = 6500 МПа.
1. СНиП II-В.4–71* Деревянные конструкции. Нормы проектирования. – М.: Стройиздат, 1978. – 32 с.
2. СНиП II–25–80 Деревянные конструкции. – М.: Стройиздат, 1982. – 65 с.
3. Пособие по проектированию деревянных конструкций (к СНиП II-25–80). – М.: Стройиздат, 1986. – 216 с.
4. Денеш, Н.Д. Учет длительности действия снеговой и постоянной нагрузок при расчете прогибов деревянных конструкций / Изв. вузов. Строительство и архитектура. – 1990. – № 7. – С. 16–20.
5. Кваснико, Е.Н. Вопросы длительного сопротивления древесины. – Л.: Литература по строительству, 1972. – 95 с.
6. Цепаев, В.А. Оценка модуля упругости древесины конструкций // Жилищное строительство. – 2003. – № 2. – С. 11–13.
Сосна и её характеристики
На территории Российской Федерации естественно произрастают и культивируются более 50 видов сосны.
В строительстве используются главным образом сосну следующих видов: обыкновенная, гибкая, смолистая, болотная, корейская.
И в северных и в средних широтах самым распространенным видом является сосна обыкновенная (Pinus sylvestris L). Однако, качество древесины сосны обыкновенной зависит от места произрастания дерева.
Наилучшим материалом для строительства, имеющим превосходные физико-механические свойства, является сосна, произрастающая в северной полосе – ангарская, карельская, архангельская.
Это связано с тем, что на севере зима более длинная, холодная, а лето короткое и сухое, что делает расстояние между годовыми кольцами минимальным (не более 2-х мм). А сосна из средней полосы имеет более широкие кольца (до 10мм) из-за более теплого, влажного и длинного лета, мягкой зимы. Более толстые годовые кольца у сосны придают древесине рыхлость, и следовательно, бревно будет иметь более низкие показатели по прочности, теплоемкости и более высокие по растрескиванию и большему проценту усадки
Для примера: процент усадки архангельского бревна составляет 3-4%; кировского, вологодского бревна – 4-6%; костромского 6-7%; тверского, смоленского, ярославского – до 10%. Поэтому при выборе материала для строительства дома необходимо учитывать все эти моменты.
В зависимости от места и условий роста дерева, ядро сосны (центральная часть ствола) может иметь различную окраску. На более возвышенных, сухих и малоплодородных почвах у сосны формируется мелкослойная плотная древесина, называемая кондовой, которая особенно ценится в строительстве. Кондовая сосна имеет мясо-красное или желто-красное ядро. На плодородных, хорошо увлажненных почвах образуется крупнослойная, менее плотная, мяндовая древесина имеющая ядро бледно-желтоватого цвета. Мяндовая сосна ценится меньше и обладает худшими механическими свойствами.
Технические характеристики сосны
Характеристика | Значение |
Плотность | 513кг/м3 |
Плотность в свежесрубленном состоянии | 625 кг/м3 |
Жесткость в свежесрубленном состоянии, кг/см2 | 79 |
Жесткость в сухом виде, кг/см2 | 109 |
Удельный вес | 0,51 |
Предел прочности при статическом изгибе, Мпа | 71,8 |
Предел прочности при сжатии вдоль волокон, Мпа | 34,8 |
Предел прочности при растяжении вдоль волокон, Мпа | 84,1 |
Предел прочности при скалывании вдоль волокон, Мпа: | |
в радиальном направлении | 6,2 |
в тангенциальном направлении | 6,4 |
Твердость, Н/кВ.мм: | |
Торцовая | 23,4 |
Радиальная | 21,6 |
Тангенциальная | 20,7 |
Модуль упругости при статическом изгибе, Гпа | 8,8 |
Удельная работа при ударном изгибе, Дж/см3 | 1,6 |
Усушка, %: | |
В продольном направлении | 0,4 |
В тангенциальном направлении | 6-8 |
В радиальном направлении | 3-4 |
Данные при 12% влажности; 1 МПа = 1 Н/мм2
Сравнительные характеристики древесины хвойных пород.
Название древесины | Устойчивость к гниению | Твердость, кг/см2 | Плотность p15, кг/м3 | Плотность p усл, кг/м3 |
КЕДР (сосна кедровая) | 3-4: от умеренной до невысокой | 200 | 440 | 350 |
ЕЛЬ | 4: невысокая | 235 | 450 | 360 |
ПИХТА сибирская | 4: невысокая | 255 | 380 | 300 |
СОСНА | 3-4: от умеренной до невысокой | 260 | 520 | 400 |
ЛИСТВЕННИЦА | 2-3: умеренная | 395 | 670 | 520 |
Описание основных хвойных пород древесины
СОСНА
Порода и ее основные свойства – древесина средней плотности, достаточно высокой прочности, стойкая против гниения и поражения грибком, хорошо обрабатывается. Особо ценится в строительстве из-за малого количества сучков и малого изменения диаметра по длине ствола.
Внешние признаки – ядровая порода со смоляными ходами (сосредоточены главным образом в поздней древесине). Заболонь широкая от желтоватого до розового цвета. Годичные слои хорошо видны на всех разрезах с четкой границей между ранней и поздней древесиной. Сердцевинные лучи не видны.
ЕЛЬ
Порода и ее основные свойства – по физико-механическим свойствам (плотность, твердость, прочность при сжатии вдоль волокон и статическом изгибе) уступает сосне (примерно на 10%), но по коэффициенту качества несколько превосходит ее на 3-4%. Древесина труднее обрабатывается из-за обилия сучков и их повышенной твердости. Достоинства: односторонность строения, длинные волокна, устойчивый белый цвет, малая смолистость, высокая способность резонировать.
Внешние признаки – порода безъядровая, спелодревесная, имеет немногочисленные смоляные ходы. Древесина однородного белого цвета, иногда со слабым желтоватым или розовым оттенком. Годичные слои хорошо видны на всех разрезах; поздняя древесина несколько отличается от ранней более темным цветом. Сердцевинные лучи не видны. В отличие от сосны имеет более крупные сучки расположеные мутовками, между которыми попадаются одиночные сучки меньших размеров.
ЛИСТВЕННИЦА
Порода и ее основные свойства – древесина, будучи высушенной, слабо подвержена гнили; хорошо противостоит действию воды.
Внешние признаки – годичные слои хорошо просматриваются при всех разрезах. Ствол лиственницы на 70 % состоит из ядра, резко выделяющегося по свойствам и цвету. Ядровая часть древесины содержат основную часть веществ, придающих лиственнице повышенную стойкость. Темная. Заболонь у лиственницы узкая, 8-20 мм, 25-30 % от древесной массы. Светлая. По физико-механическим свойствам уступает ядру
ПИХТА сибирская
Порода и ее основные свойства – древесина с заметно пониженными физико-механическими свойствами по сравнению с древесиной ели. В строительстве практически не используется.
Внешние признаки – порода безъядровая, со спелой древесиной; похожа на древесину ели, от которой отличается отсутствием смоляных ходов; однородного белого цвета. Годичные слои видны на всех разрезах; поздняя древесина отличается от ранней более темным цветом. Крупные сучки расположены мутовками, между которыми встречаются мелкие одиночные сучки.
КЕДР (сосна кедровая)
Порода и ее основные свойства древесина мягкая, легкая, легко обрабатывается. По физико-механическим свойствам занимает промежуточное положение между древесиной ели и пихты, но превышает их по стойкости против гниения. Прочность при сжатии и статическом изгибе ниже на 4-5% при плотности, равной плотности древесины ели
Внешние признаки – древесина имеет ядро светло- и желтовато-розового цвета, не резко отграничена от широкой желтовато-белой заболони. Годичные слои заметные, переход от ранней древесины к поздней постепенный, растушеванный. Смоляных ходов меньше, чем у сосны, но они более крупные. Сердцевинные лучи не видны.